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Displacement and Dispersion of Particles of Finite Size 
in Flow Channels with Lateral Forces. Field-Flow 
Fractionation and Hydrodynamic Chromatography 

J. CALVIN GIDDINGS 
DEPARTMENT OF CHEMISTRY 
UNIVERSITY OF UTAH 

SALT LAKE CITY, UTAH 84112 

Abstract 

The role of finite particle size is established for two flow-channel separation 
techniques: hydrodynamic chromatography (HC) and field-flow fractionation 
(FFF). Both mean displacement velocity and dispersion are affected. A model 
is established where, for simple channel symmetries, the influence of particle 
size is calculated in terms of modifications of the known FFF equations for 
infinitely small particles displaced in a narrow channel and subject to lateral 
forces. This approach avoids the tedium of obtaining new sol~itions to the basic 
mass-transport equations, and the results automatically relate to those at the 
zero-size limit. Specific equations are derived for channels between infinite 
parallel walls. The retention ratio is treated first; this parameter yields the 
mean displacement velocity. The plate height, which is treated subsequently, 
yields effective axial dispersion. Plots of the relevant equations are given and 
some implications and complications in the theory of HC and FFF are noted. 

I NTROD UCTlO N 

The behavior of particles of finite size in flow channels not enormously 
larger in size has drawn attention recently because of its importance in 
certain natural phenomena and in particle fractionation methodology. As 
an example of the former, the displacement of red blood cells through 
the fine capillaries of the extrema of the circulatory system show strong 
particle size effects (1). 
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A finite particle/channel size ratio is responsible for fractionation in the 
technique known as hydrodynamic chromatography, or separation by 
flow (2-6). In this technique, advantage is taken of the fact that the center 
of mass of the particle is unable to approach the wall within a distance 
less than one effective particle radius. Large particles as a whole are thus 
forced more than small particles into the center of the flow channel where 
displacement velocity is highest. A size-based fractionation results. 

Field-flow fractionation (FFF) is another method that usually separates 
particles on the basis of size or mass (7-13). In this case larger particles are 
forced preferentially toward the wall. This is a result of lateral forces which 
interact most strongly with the largest particles, or of a reduced diffusional 
flux of the largest particles away from the wall once driven there by the 
forces. The forces, or more properly the efective forces, used for this 
purpose are thermal gradients (9), sedimentation forces (10, I I), electrical 
forces (f4), and lateral flow displacements (12) .  Clearly, when solute par- 
ticles are large enough that their diameters become a significant fraction 
of the mean thickness I of the solute cloud or of the width UJ of the channel, 
retention and plate height (zone dispersion} parameters are perturbed by 
the inability of the particle center of gravity to reach the walls. 

The paper preceding this, by Gaydos and Brenner, provides a funda- 
mental treatment of this problem. It includes the theory of nonspherical 
particles. This theory is an outgrowth of earlier work by these authors 
which includes finite size effects but not effective force effects (15). 

Our approach represents a different line of attack. We simplify it by as- 
suming that the particles can be treated as rigid spheres of radius a ;  that 
particle diffusivity is everywhere described by a single constant, D ;  that 
the flow is Newtonian and laminar; and that the particle velocity induced 
by flow is equal to the unperturbed stream velocity at the position of the 
center of mass. 

With these assumptions, mean solute velocity (retention) and zone 
dispersion (plate height) in certain symmetrical channels can be written 
in terms of the known equations applicable to particles of infinitesimal 
size. This fact is particularly useful in the case of dispersion theory be- 
cause the equations of dispersion in the presence of a lateral field are 
unusually complicated (16-f8). Not only is repetition of the tedious deriva- 
tion for particles of finite size avoided, but also the variations caused by 
increasing particle size emerge directly as a result of the nature of the 
approach. 

Tt the present model the finite size of the solute particle excludes its center 
of gravity from a layer of thickness a adjacent to the wall. In the case of a 
channel of circular cross section, or one bounded by two infinite parallel 
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DISPLACEMENT AND DISPERSION OF PARTICLES 243 

EXCLUSION 
LAYER 
4-J 

T 
a 

FIG. 1 .  Spherical particle in flow channel subject to a lateral force. The particle’s 
center of gravity, unable to approach closer than distance a to the wall, executes 

Brownian displacements only in the “accessible core.” 

planes, the center of gravity executes Brownian translation over a reduced 
cross-sectional area, but the accessible cross section maintains its original 
symmetry. This can be seen by reference to Fig. 1. We term the reduced 
area available to the particle’s center as the accessible core, or simply the 
core, and the inaccessible region next to the wall as the exclusion luyer. 

Under laminar conditions, flow in the core is described by the same 
parabolic equations that describe flow over the entire channel cross 
section. Thus the core becomes, for all practical purposes, a flow channel 
in its own right, with the same symmetry and flow characteristics as 
possessed by the parent channel. Hence the theory of the latter, which is 
well developed, can be applied to the core and the spheres diffusing 
therein. 

Below we apply this concept to flow in narrow channels between 
parallel plates, but the same arguments can be applied to channels of 
circular cross section. We allow for the existence of a lateral field per- 
pendicular to the faces of the plates, capable of displacing solute species 
in a way characteristic of field-flow fractionation methodology. 

We designate by the use of the superscript, (*), each of the quantities 
related to core flow. All such variables will be formulated in such a manner 
that the core will appear as a closed flow tube with stationary walls. These 
effective walls will, of course, be traveling at velocity uo relative to the real 
walls confining the parent channel (see Fig. I). Quantities related to the 
parent channel-and thus to the laboratory frame of reference-are 
those without superscript (*). 

Flow velocity u as a function of distance x from the wall of the parent 
channel is given by the usual parabolic expression 
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The velocity, vo,  at the core boundary is found by substituting particle 
radius a for x in this expression. We get 

(2) 
1 2 2 C( 2 0 U O  = ~ ( v ) ( c (  - m 2 ) ,  

where c( = a/w. 

is written as 
We now introduce some core parameters. Mean core flow velocity ( u * )  

(V - uO) dx (3) 

where vo is substracted because core quantities are defined as those 
resulting when the core boundary is considered stationary. The sub- 
stitution of Eqs. ( I )  and (2) into (3), followed by integration and simplifica- 
tion, yields 

which, of course, approaches unity as c1 4 0. 

MEAN DISPLACEMENT VELOCITY 

The mean velocity of solute in the laboratory (parent channel) co- 
ordinate system is simply 

V = v0 + R*(v*) ( 5 )  

where R* is the retention ratio (solute velocity/mean solvent velocity) 
for the inner core. [Quantity R* can be made < 1  by the application of 
external fields ; this is done routinely to achieve selective retention and 
thus separation in field-flow fractionation (7-Id).] 

The retention ratio for the parent channel-which is the observed 
retention ratio-is 

When Eqs. (2) and (4) are substituted into this, we obtain 

R = 6 ( ~  - a') + R*(l - 2 ~ ) '  (7) 

It is useful now to define another retention ratio, Rid. This is the hy- 
pothetical value calculated on the assumption that the particle center can 
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DISPLACEMENT AND DISPERSION OF PARTICLES 245 

reach the channel wall. We refer to this assumed condition as ideal; in 
FFF this condition is part of a broader definition of ideality. 

Quantity Rid (along with the other R parameters) can be expressed in 
terms of a more fundamental parameter, Aid, The theory of FFF yields (8) 

Rid = 6Aid[COth (1/2Aid - 2Aid] (8) 
Parameter rl. relates directly to the force or effective force, F, by means of 
which the field impels the particle toward one wall of the channel. We 
have (8, 20) 

Aid = kT/Fw (9) 

where k is Boltzmann’s constant and T is the absolute temperature. 
Alternatively, F can be replaced by Crf and kT by Of to yield (8) 

Aid = D/Uw (10) 
where U is the drift velocity induced by the field, D is the particle diffusion 
coefficient, and f the friction coefficient. 

When finite particle diameter is accounted far, channel width w must be 
replaced by core width w - 2a = w(I - 2u), and we have 

A* = Aid/( l  - 201) (1 1) 

The core retention ratio is related to this by the same fundamental theoreti- 
cal expression used in Eq. (8): 

R* = 6L*{coth(1/21*) - 2A*} (12) 
By combining Eqs. (7), (1 l), and (12), we obtain for the observed retention 
ratio R :  

Several limiting forms have special applications. Hydrodynamic 
chromatography is realized in the absence of a lateral force, a condition 
for which Aid approaches 00. Under these conditions 

R = (1 - 6a2 + 4cc3)/(1 - 2cc) 
Au + co 

For field-flow fractionation, u and I are typically small, yielding the 
following expression for R when expanded around zero : 

R = 6~ 4- 6Aid - 6~1’ - 12Aida - 121:d + * . * (1 5 )  
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146 GlDDlNGS 

An approximation valid for very small CI’S and A i d ’ s  is therefore 

R = ~ L Y  + 6hid 

Values of R from Eq. (13) are plotted as a function of a for various Ajd 

values in Fig. 3. The values shown for CI + 0.5 will, of course, be in sig- 
nificant error because the assumption that the particlc travels at the 
unperturbed flow velocity at its center is clearly inappropriate as the 
particle apprw‘ches a size that spans the entire channel. As expected, 
increasing particle size (increasing CI) causes an increase in R because the 
particles are forced deeper into the high Row region near the channel 
center. 

The increase in migration rate with increasing 01 is the phenomenon 
underlying fractionation in hydrodynamic chromatography (2-6). The 
appropriate curve is the upper one, A, = 03, in Fig. 3. The fact that 
solute always advances more rapidly than solvent in this system is mani- 
fested by R 2 1. The fractionation sequence is such that large particles are 
eluted before small particles. 

By contrast, in field-flow fractionation finite particle size causes no more 
than a perturbation on the basic fractionation effect induced by the 
applied field. The perturbation, however, is generally counterproductive 
because the normal elution sequence is such that the largest particles 
arrive last. The convergence of the lines in  Fig. 3 with increasing CI is one 
illustration of this, as can be seen by noting that the increments between 
lines is proportional to relative velocity differences. More important-and 
not at all obvious from the plots because they represent constant A i d  

values-is the perturbation as c( and A i d  both approach zero. This is 
described by Eq. (16). As particle size increases, the l i d  term of this equa- 
tion always decreases in FFF, and the c1 term increases. At a critical 
diameter the effects will exactly balance one another, and there will be no 
size discrimination-that is, no size-based separation occurs. For example, 
in flow FFF in which Aid is inversely proportional to a, size discrimination 
will disappear when CI = A, or a = WAid.  As particle radius increases 
beyond this, the larger particles will begin emerging earlier, contrary to 
the normal trend in FFF. In the case of sedimentation FFF, size dis- 
crimination will disappear at a = 3 W A i d ,  as a consequence of the fact that 
h i d  is inversely proportional to u3. 

PEAK DISPERSION 

The theory of peak dispersion proceeds similarly. In the case where 
particles are assumed not to be excluded from the wall region, the plate 
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DISPLACEMENT A N D  DISPERSION OF PARTICLES 247 

height assumes it ideal form 

where x i d  is a dimensionless coefficient that varies in a complicated way 
with A i d .  It is represented by xi,, = x ( A i d ) .  An explicit expression for ~ ( x )  
is given elsewhere (17). The present approach avoids the necessity for a 
separate derivation of a “XI’ term in order to incorporate particle size 
effects. 

The above equation can be readily modified to represent the core plate 
height 

H* = x*(w - 2 a ) 2 ( u * ) / ~  (18) 

where x* = x(A*). 
The term plate height-used frequently as a dispersion parameter (Z9)- 

can be defined as 2x (effective dispersion coefficient)/(mean displacement 
velocity). It is equivalent to the distance-based rate of generation of 
variance, a’, in the peak width; thus the core plate height becomes 

H *  = dc2/dZ* (19) 

whereas the plate height of the parent channel (the experimental quantity) 
is 

H = dc2/dZ (20) 

where 2” and Z are the mean distances of displacement of the solute in 
the core and the parent channel, respectively. The two coordinate systems 
are illustrated in Fig. 2. 

One can obtain the observed plate height value defined by Eq. (20) 
from the theoretically calculable value of Eq. (19) by using dZ*/dZ as a 
multiplying factor. This factor is simply the ratio of velocities, (dZ*/dt)/  
dZ/dt, or R*(v*)/R(v) .  Using this fact and Eq. (6)  to obtain the latter 
ratio, we have 

H = H*(l - VO/R(V))  (21) 
When combined with Eq. (18) this yields 

Upon using a = ajw along with Eqs. (2), (4), (6), and (7), we obtain 
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248 ClDDlNGS 

FIG. 2. Coordinate system for measuring peak dispersion in terms of plate 
height using Eqs. (19) and (20). 

In view of the similar form of this and Eq. (17), the ratio of H t o  its ideal 
value is 

When x* and Xi,, are written as x(A*) and x(nid), respectively, and Eq. (1 1) 
is used for A*, we get 

When A* from Eq. (1 1)  is substituted into Eq. (12), and the latter used for 
R* in Eq. (25), we get 

I (26) 

(1 - 2a)’ 
(a - a’) + (1 - 2a) 

A i d { C O t h ( y )  - &a] 

_ -  x(lid/(l - 2a)) 
Hid x(AiJ 

- 

In the limit applicable to hydrodynamic chromatography, lid = 00, this 
equation reduces to 

1 H (1 - 243 
6(a - a’) -t (1 - ~ C X ) ~  
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DISPLACEMENT AND DISPERSION OF PARTICLES 249 

and when CI and hid both approach zero 

a limit reasonably descriptive of practical FFF. 
Equation (26) is explicit in d and A i d  except in the x functions. For the 

latter, an explicit expression has been reported elsewhere (17). Using this 
source the ratio of x functions, x(Aid/(l - 2a))/x(Ai,,), has been evaluated 
for various Aid’s  and a’s. This ratio has been combined with the remainder 
of Eq. (26) and plotted in Fig. 4 as the H / H ,  ratio. Clearly, finite particle 
size is associated with a reduction in plate height relative to the zero-size 
limit. 

DISCUSS10 N 

In Figs. 3 and 4, hydrodynamic chromatography (HC) corresponds to 
the single curve representing the absence of external forces: A i d  = co. 
These solutions by themselves are not unusually significant, for two 
reasons. First, a more comprehensive analysis for this special case has 
been given in the literature (2, 3). The equations-like those presented 
here-are valid for tubes of perfectly uniform cross section. 

Second, if randomly packed beds are used for HC, the flow channels 
cannot be represented by a parallel series of uniform tubes or slits. Analo- 
gous attempts in other forms of chromatography have largely failed (19), 
and they are expected to  do so even more in HC because of more sluggish 
diffusion. To account for experimental observations in chromatography, 
it is necessary to allow for the dispersion due to the random flow pattern. 
When calculated for liquid chromatography, this effect is much smaller 
than the dispersion accounted for here. Unfortunately, for the simple 
theories, the effects are not additive. More detailed considerations show 
that these two effects are combined in approximate accord with the 
coupling equation (19-23) 

where HN is the nonequilibrium plate height term-the subject of the main 
theoretical treatment of this paper-and HF is the contribution of random 
flow in the absence of diffusion. Because quantity HN is inversely pro- 
portional to particle diffusivity, it is relatively large in all forms of liquid 
chromatography, usually to such a degree that HN >> HF. Under these 
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0 0.1 0.2 0.3 0.4 0.5 

a 
FIG. 3. Variation of retention ratio R with the ratio, a, of particle radius to 
channel width at  various values of A,,,. Equation (13) was used for this plot. 
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I\ \\ ,hid = 0.2 

. .  
0 0:1 0.2 0.3 0.4 0.5 

a 
FIG. 4. Ratio of plate height, H, to its value (ideal) in the absence of particle-size 

effects, Htd, as a function of dimensionless particle size, a. 

circumstances its influence largely disappears, and Eq. (29) yields 

H N HF = const x d, (30) 
an equation showing that H approaches HF, a constant for a given chro- 
matographic bed packed with particles of mean diameter d,. The ap- 
proximate order of magnitude of the various terms given here is provided 
elsewhere (29). 

Random beds may also complicate mean displacement velocities in HC. 
Because of the large size of the solute particles, they will be carried 
repeatedly against the walls of the fixed particles as flow channels split 
around obstacles and the streamlines graze within distance a of various 
elements of solid surfaces. Once forced against the surface, their progress 
would be slowed or halted. Their progress would not fully resume until 
the particles were “rolled” along and finally away from the surfaces by 
flow, or until they escaped by diffusion. The larger particles, having more 
sluggish diffusion, would tend to become trapped in crevices and apera- 
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tures through which the fluid could pass, but they could not. Escape 
would be likely only in cases where a very small diffusional displacement 
would free the particle. The effective mean back-diffusional distance 
against a flow stream of velocity v is 1 = DjW (12), which may typically 
be as small as (lo-' cm2/sec)/(10-2 cmjsec) = cm. This is many 
times smaller than the diameter of some particles of interest. Diffusional 
fluctuations would somewhat enlarge the effective escape path calculated 
here, but not to a major degree. 

In short, one would expect a retardation and trapping effect not ac- 
counted for in the simple theory. The effect would increase with particle 
diameter and flow velocity. 

The retardation effect might best be accounted for by a simple model 
of electrophoretic migration (24). This mode4 was developed for an 
analogous effect in electrically conducting solutions in which the current 
flows through the solid elements of a network which cannot be penetrated 
by large charged particles. 

We should add here that the multipath effect in packed beds might also 
perturb equilibrium and thus retention in the gel exclusion chroma- 
tography of large particles. The hydrodynamic effect described above 
would lead to concentrations higher than the equilibrium values near the 
fixed surfaces, and thus a higher-than-expected partitioning of particles 
into the pores at the surface. 

The disturbances in retention suggested above would be most evident 
for reduced velocities, v = d,<v)/D, much greater than unity. Quantity 
d, is the mean particle diameter of the fixed bed. Unfortunately, almost 
all liquid chromatography is run under conditions such that v > 1 
(usually v >> 1) as a practical matter (19). 

Field-flow fractionation (FFF) is not subject to the severe complications 
of packed-bed hydrodynamic chromatography because its channel is 
always without obstructions. The channel geometry is uniform and 
mathematically tractable such that the theoretical predictions of mean 
displacement velocity under the influence of various applied fields has 
been highly successful. 

The width, w, of FFF channels is typically 0.25 mm, or 250 pm. Clearly 
finite-size effects for - 1 pm particles unaffected by a field would be small. 
A lateral field or force, however, compresses the particle cloud near one 
wall, and its mean altitude, I, may be no more than a few pm. We regard 
10 pm as typical, but considerably smaller values are sometimes realized. 
Under these circumstances, and with particles approaching 1 pm diameter, 
finite size effects are expected to have a significant role in retention and 
dispersion, much as outlined by the theory of this paper. 
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TABLE 1 
Experimental Retention Volumes V, of Polystyrene Latex Beads in Sedimenta- 
tion FFF Compared to Theoretical Values (a) Allowing for Finite Particle Size 

( R  = 6a 4- 6&d) and (b) Totally Neglecting Particle Size ( R  = 6&) 

v r  @I) 
Particle Experimental Theoretical (a) Theoretical (b) 

diameter (jm) v, V, V, 

0.765 86.3 87.0 98.8 
0.982 164 135 185 

Previously published FFF data to  test the foregoing theory are scarce 
because particle size effects have been minor in most work. We have 
recently completed an experiment with sedimentation FFF, however, 
that permits an initial test of retention theory (25). Polystyrene latex 
beads of diameters 0.982 and 0.765 pm were retained in a 5.21-ml volume 
column for 49 ml at 21 gravities, following which elution was completed 
at 11.8 gravities. The elution volume V, was calculated as the sum of the 
two volumes corresponding to the respective field strengths by the equation 

V, = V ,  + Vo(l - V,R, /Vo) /R ,  (31) 
where V ,  is the first component of the elution volume-49 ml in this case- 
and V o  is the column volume-5.21 ml. Retention ratios R ,  and R,  
correspond to  the two respective levels of field strength noted. We have 
calculated the necessary R ,  and R, values by using (a) Eq. (16), R = 
6c1 + 6Aid, and (b) R = 6A,, the latter applicable when particle size is 
negligible, ct + 0. The results are shown in Table I .  

Examination of the table shows that the particle size effect is quite 
accurately predicted with the 0.765 pm particles, but only partly accounted 
for with 0.982 pm particles. Since retention calculations in sedimentation 
FFF are generally quite accurate (ZO), the discrepancy cannot be quickly 
assigned to random errors or to distortions unrelated to particle size. Yet 
no particle-size effect can be identified from the limited data. It is possible 
that the larger particles are driven to the wall with sufficient force that 
some type of particle-wall interaction creates an additional retention 
effect. An evaluation of this hypothesis, unfortunately, must await the 
accumulation of additional experimental evidence. 
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