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Displacement and Dispersion of Particles of Finite Size
in Flow Channels with Lateral Forces. Field-Flow
Fractionation and Hydrodynamic Chromatography

J. CALVIN GIDDINGS

DEPARTMENT OF CHEMISTRY
UNIVERSITY OF UTAH
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Abstract

The role of finite particle size is established for two flow-channel separation
techniques: hydrodynamic chromatography (HC) and field-flow fractionation
(FFF). Both mean displacement velocity and dispersion are affected. A model
is established where, for simple channel symmetries, the influence of particle
size is calculated in terms of modifications of the known FFF equations for
infinitely small particles displaced in a narrow channel and subject to lateral
forces. This approach avoids the tedium of obtaining new solutions to the basic
mass-transport equations, and the results automatically relate to those at the
zero-size limit, Specific equations are derived for channels between infinite
parallel walls. The retention ratio is treated first; this parameter yields the
mean displacement velocity. The plate height, which is treated subsequently,
yields effective axial dispersion. Plots of the relevant equations are given and
some implications and complications in the theory of HC and FFF are noted.

INTRODUCTION

The behavior of particles of finite size in flow channels not enormously
larger in size has drawn attention recently because of its importance in
certain natural phenomena and in particle fractionation methodology. As
an example of the former, the displacement of red blood cells through
the fine capillaries of the extrema of the circulatory system show strong
particle size effects (/).
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A finite particle/channel size ratio is responsible for fractionation in the
technique known as hydrodynamic chromatography, or separation by
flow (2-6). In this technique, advantage is taken of the fact that the center
of mass of the particle is unable to approach the wall within a distance
less than one effective particle radius. Large particles as a whole are thus
forced more than small particles into the center of the flow channel where
displacement velocity is highest. A size-based fractionation results.

Field-flow fractionation (FFF) is another method that usually separates
particles on the basis of size or mass (7-13). In this case larger particles are
forced preferentially toward the wall. This is a result of lateral forces which
interact most strongly with the largest particles, or of a reduced diffusional
flux of the largest particles away from the wall once driven there by the
forces. The forces, or more properly the effective forces, used for this
purpose are thermal gradients (9), sedimentation forces (10, 11), electrical
forces (/4), and lateral flow displacements (/2). Clearly, when solute par-
ticles are large enough that their diameters become a significant fraction
of the mean thickness / of the solute cloud or of the width w of the channel,
retention and plate height (zone dispersion) parameters are perturbed by
the inability of the particle center of gravity to reach the walls.

The paper preceding this, by Gaydos and Brenner, provides a funda-
mental treatment of this problem. It includes the theory of nonspherical
particles. This theory is an outgrowth of earlier work by these authors
which includes finite size effects but not effective force effects (/5).

Our approach represents a different line of attack. We simplify it by as-
suming that the particles can be treated as rigid spheres of radius a; that
particle diffusivity is everywhere described by a single constant, D; that
the flow is Newtonian and laminar; and that the particle velocity induced
by flow is equal to the unperturbed stream velocity at the position of the
center of mass.

With these assumptions, mean solute velocity (retention) and zone
dispersion (plate height) in certain symmetrical channels can be written
in terms of the known equations applicable to particles of infinitesimal
size. This fact is particularly useful in the case of dispersion theory be-
cause the equations of dispersion in the presence of a lateral field are
unusually complicated (/6-18). Not only is repetition of the tedious deriva-
tion for particles of finite size avoided, but also the variations caused by
increasing particle size emerge directly as a result of the nature of the
approach.

Tt the present model the finite size of the solute particle excludes its center
of gravity from a layer of thickness @ adjacent to the wall. In the case of a
channel of circular cross section, or one bounded by two infinite parallel
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EXCLUSION
LAYER
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CORE

l<— VO-»[ T
F1G. 1. Spherical particle in flow channel subject to a lateral force. The particle’s

center of gravity, unable to approach closer than distance a to the wall, executes
Brownian displacements only in the ‘““accessible core.”

planes, the center of gravity executes Brownian translation over a reduced
cross-sectional area, but the accessible cross section maintains its original
symmetry. This can be seen by reference to Fig. 1. We term the reduced
area available to the particle’s center as the accessible core, or simply the
core, and the inaccessible region next to the wall as the exclusion layer.

Under laminar conditions, flow in the core is described by the same
parabolic equations that describe flow over the entire channel cross
section. Thus the core becomes, for all practical purposes, a flow channel
in its own right, with the same symmetry and flow characteristics as
possessed by the parent channel. Hence the theory of the latter, which is
well developed, can be applied to the core and the spheres diffusing
therein.

Below we apply this concept to flow in narrow channels between
parallel plates, but the same arguments can be applied to channels of
circular cross section. We allow for the existence of a lateral field per-
pendicular to the faces of the plates, capable of displacing solute species
in a way characteristic of field-flow fractionation methodology.

We designate by the use of the superscript, (*), each of the quantities
related to core flow. All such variabies will be formulated in such a manner
that the core will appear as a closed flow tube with stationary walls. These
effective walls will, of course, be traveling at velocity v° relative to the real
walls confining the parent channel (see Fig. 1). Quantities related to the
parent channel—and thus to the laboratory frame of reference—are
those without superscript (*).

Flow velocity v as a function of distance x from the wall of the parent
channel is given by the usual parabolic expression

2
b= 6(v><% - %) (1)

w
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The velocity, v°, at the core boundary is found by substituting particle

radius a for x in this expression. We get

p—

0 = 6o — a?),

\%
R
\%
o

0

where o = a/w.
We now introduce some core parameters. Mean core flow velocity {v*>
is written as

j‘w—a (v — v°) dx 3

w—2a),

¥ =

where v°® is substracted because core quantities are defined as those
resulting when the core boundary is considered stationary. The sub-
stitution of Egs. (1) and (2) into (3), followed by integration and simplifica-
tion, yields
v*)
vy

which, of course, approaches unity as « — 0.

= (1 - 29 @

MEAN DISPLACEMENT VELOCITY

The mean velocity of solute in the laboratory (parent channel) co-
ordinate system is simply

¥ = 1° + R*v*) )

where R* is the retention ratio (solute velocity/mean solvent velocity)
for the inner core. [Quantity R* can be made <1 by the application of
external fields; this is done routinely to achieve selective retention and
thus separation in field-flow fractionation (7-74).]

The retention ratio for the parent channel-—which is the observed
retention ratio—is

v 00+ R*v*)
S ON ®
When Egs. (2) and (4) are substituted into this, we obtain
R = 6(x — a?) + R*(1 — 2a)? @)

It is useful now to define another retention ratio, R, This is the hy-
pothetical value calculated on the assumption that the particle center can
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reach the channel wall. We refer to this assumed condition as ideal; in
FFF this condition is part of a broader definition of ideality.

Quantity R;; (along with the other R parameters) can be expressed in
terms of a more fundamental parameter, 4., The theory of FFF yields (8)

Ry = 6A[coth (1)24,, — 24, ®)

Parameter A relates directly to the force or effective force, F, by means of
which the field impels the particle toward one wall of the channel. We
have (8, 10)

Ay = kT/Fw )

where k is Boltzmann’s constant and 7 is the absolute temperature.
Alternatively, F can be replaced by Uf and kT by Df to yield (8)

where U is the drift velocity induced by the field, D is the particle diffusion
coeflicient, and f the friction coefficient.

When finite particle diameter is accounted for, channel width w must be
replaced by core width w — 2¢ = w(l — 2¢), and we have

A = 2,/(1 — 20) an

The core retention ratio is related to this by the same fundamental theoreti-
cal expression used in Eq. (8):

R* = 62*{coth (1/24%) — 24*} (12)

By combining Egs. (7), (11), and (12), we obtain for the observed retention
ratio R:

1 - 2a 24,
_ A2 . — . id
R = 6(o — %) + 64(1 2a){coth( . > T Za} (13)
Several limiting forms have special applications. Hydrodynamic
chromatography is realized in the absence of a lateral force, a condition
for which 1;; approaches co. Under these conditions
R = (1 — 60% + 4)/(1 — 2)
(14)
l‘d — 00
For field-flow fractionation, o and 4 are typically small, yielding the
following expression for R when expanded around zero:

R = 6a + 61, — 6a® — 1240 — 1242 + ... (15)
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An approximation valid for very small «’s and 1;;’s is therefore
R = 60( + 62.“ (16)

Values of R from Eq. (13) are plotted as a function of « for various 4,
values in Fig. 3. The values shown for a — 0.5 will, of course, be in sig-
nificant error because the assumption that the particle travels at the
unperturbed flow velocity at its center is clearly inappropriate as the
particle approaches a size that spams the entire channel. As expected,
increasing particle size (increasing «) causes an increase in R because the
particles are forced deeper into the high flow region near the channel
center.

The increase in migration rate with increasing o is the phenomenon
underlying fractionation in hydrodynamic chromatography (2-6). The
appropriate curve is the upper one, 4, = oo, in Fig. 3. The fact that
solute always advances more rapidly than solvent in this system is mani-
fested by R = 1. The fractionation sequence is such that large particles are
eluted before small particles.

By contrast, in field-flow fractionation finite particle size causes no more
than a perturbation on the basic fractionation effect induced by the
applied field. The perturbation, however, is generally counterproductive
because the normal elution sequence is such that the largest particles
arrive last. The convergence of the lines in Fig. 3 with increasing « is one
illustration of this, as can be seen by noting that the increments between
lines is proportional to relative velocity differences. More important—and
not at all obvious from the plots because they represent constant A,
values—is the perturbation as « and A,; both approach zero. This is
described by Eq. (16). As particle size increases, the 1, term of this equa-
tion always decreases in FFF, and the « term increases. At a critical
diameter the effects will exactly balance one another, and there will be no
size discrimination—that is, no size-based separation occurs. For example,
in flow FFF in which 4, is inversely proportional to a, size discrimination
will disappear when a = 1,, or a = wi;;. As particle radius increases
beyond this, the larger particles will begin emerging earlier, contrary to
the normal trend in FFF. In the case of sedimentation FFF, size dis-
crimination will disappear at a = 3wi,,, as a consequence of the fact that
A4 is inversely proportional to a°.

PEAK DISPERSION

The theory of peak dispersion proceeds similarly. In the case where
particles are assumed not to be excluded from the wall region, the plate
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height assumes it ideal form
Hy = g w*(v)/D an

where y;, is a dimensionless coefficient that varies in a complicated way
with ;. It is represented by y;; = x(4,). An explicit expression for y(x)
is given elsewhere (/7). The present approach avoids the necessity for a
separate derivation of a “y” term in order to incorporate particle size
effects.

The above equation can be readily modified to represent the core plate
height

H* = y*(w — 2a)*(v*>/D (18)

where x* = y(1%).

The term plate height—used frequently as a dispersion parameter (/9)—
can be defined as 2x (effective dispersion coefficient)/(mean displacement
velocity). It is equivalent to the distance-based rate of generation of
variance, 62, in the peak width; thus the core plate height becomes

H* = do*[dZ* (19)

whereas the plate height of the parent channel (the expzrimental quantity)
is

H = do?/dZ (20)

where Z* and Z are the mean distances of displacement of the solute in
the core and the parent channel, respectively. The two coordinate systems
are illustrated in Fig. 2.

One can obtain the observed plate height value defined by Eq. (20)
from the theoretically calculable value of Eq. (19) by using dZ*/dZ as a
multiplying factor. This factor is simply the ratio of velocities, (dZ*/dt)/
dz/dt, or R*{v*>/R{v>. Using this fact and Eq. (6) to obtain the latter
ratio, we have

H = H*(1 — v°/R)) 21
When combined with Eq. (18) this yields

v = 20%(o)

H= ) (1 — v°/R<v)) (22)

Upon using « = a/w along with Eqgs. (2), (4), (6), and (7), we obtain

AR R*(1 — 2u)®
H==—5 [6(0: %) + RA(L = 22

23)
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FiG, 2. Coordinate system for measuring peak dispersion in terms of plate
height using Eqgs. (19) and (20).

In view of the similar form of this and Eq. (17), the ratio of H to its ideal
value is

* _ 6
H x[ R¥(1 = 2) 24

Hy  1alb@ — «%) + R = 2)°
When x* and y,, are written as y(4*) and x(4,,), respectively, and Eq. (11)
is used for A*, we get

H - $(Aia/(1 — 20‘))[ R*(1 — 24)¢ ]

Hy 10 6@ — o%) + R*(1 = 2a)?

When A* from Eq. (11) is sﬁbstituted into Eq. (12), and the latter used for
R* in Eq. (25), we get

H iyl = 20) (1 — 20)?
Hy G (@ — o) + (1 - 20)

1 - 2“ 2A’id
aieor(37) =)

In the limit applicable to hydrodynamic chromatography, 1,; = oo, this
equation reduces to

H (1 = 2)°
", [6(0: S - 2a)7] @n

(25)

(26)
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and when o and A, both approach zero

H Aia
Hy o+ Ay (28)
a limit reasonably descriptive of practical FFF.

Equation (26) is explicit in « and 4, except in the y functions. For the
latter, an explicit expression has been reported elsewhere (/7). Using this
source the ratio of y functions, y(4;,/(1 — 2a))/x(4;s), has been evaluated
for various 4;;’s and «’s. This ratio has been combined with the remainder
of Eq. (26) and plotted in Fig. 4 as the H/H,, ratio. Clearly, finite particle
size is associated with a reduction in plate height relative to the zero-size
limit,

DISCUSSION

In Figs. 3 and 4, hydrodynamic chromatography (HC) corresponds to
the single curve representing the absence of external forces: A, = oo.
These solutions by themselves are not unusually significant, for two
reasons. First, a more comprehensive analysis for this special case has
been given in the literature (2, 3). The equations—Ilike those presented
here—are valid for tubes of perfectly uniform cross section.

Second, if randomly packed beds are used for HC, the flow channels
cannot be represented by a parallel series of uniform tubes or slits. Analo-
gous attempts in other forms of chromatography have largely failed (19),
and they are expected to do so even more in HC because of more sluggish
diffusion. To account for experimental observations in chromatography,
it is necessary to allow for the dispersion due to the random flow pattern.
When calculated for liquid chromatography, this effect is much smaller
than the dispersion accounted for here. Unfortunately, for the simple
theories, the effects are not additive. More detailed considerations show
that these two effects are combined in approximate accord with the
coupling equation (19-23)

1 1
H=l/<ﬁl—v+—ﬁ;> (29)
where Hy is the nonequilibrium plate height term—the subject of the main
theoretical treatment of this paper—and Hy is the contribution of random
flow in the absence of diffusion. Because quantity Hy is inversely pro-
portional to particle diffusivity, it is relatively large in all forms of liquid
chromatography, usually to such a degree that Hy » H,. Under these
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FIG. 3. Variation of retention ratio R with the ratio, «, of particle radius to
channel width at various values of 1,,. Equation (13) was used for this plot.
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T
0.4

FiG. 4. Ratio of plate height, H, to its value (ideal) in the absence of particle-size
effects, Hy,, as a function of dimensionless particle size, a.

circumstances its influence largely disappears, and Eq. (29) yields
H ~ Hp = const x d, (30)

an equation showing that H approaches Hp, a constant for a given chro-
matographic bed packed with particles of mean diameter d,. The ap-
proximate order of magnitude of the various terms given here is provided
elsewhere (19).

Random beds may also complicate mean displacement velocities in HC.
Because of the large size of the solute particles, they will be carried
repeatedly against the walls of the fixed particles as flow channels split
around obstacles and the streamlines graze within distance a of various
elements of solid surfaces. Once forced against the surface, their progress
would be slowed or halted. Their progress would not fully resume until
the particles were “rolled” along and finally away from the surfaces by
flow, or until they escaped by diffusion. The larger particles, having more
sluggish diffusion, would tend to become trapped in crevices and apera-
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tures through which the fluid could pass, but they could not. Escape
would be likely only in cases where a very small diffusional displacement
would free the particle. The effective mean back-diffusional distance
against a flow stream of velocity v is / = D/U (12), which may typically
be as small as (1078 cm?/sec)/(10™% cm/sec) = 10~° cm. This is many
times smaller than the diameter of some particles of interest. Diffusional
fluctuations would somewhat enlarge the effective escape path calculated
here, but not to a major degree.

In short, one would expect a retardation and trapping effect not ac-
counted for in the simple theory. The effect would increase with particle
diameter and flow velocity.

The retardation effect might best be accounted for by a simple model
of electrophoretic migration (24). This model was developed for an
analogous effect in electrically conducting solutions in which the current
flows through the solid elements of a network which cannot be penetrated
by large charged particles.

We should add here that the multipath effect in packed beds might also
perturb equilibrium and thus retention in the gel exclusion chroma-
tography of large particles. The hydrodynamic effect described above
would lead to concentrations higher than the equilibrium values near the
fixed surfaces, and thus a higher-than-expected partitioning of particles
into the pores at the surface.

The disturbances in retention suggested above would be most evident
for reduced velocities, v = d,{v)/D, much greater than unity. Quantity
d, is the mean particle diameter of the fixed bed. Unfortunately, almost
all liquid chromatography is run under conditions such that v > |
(usually v >» 1) as a practical matter (/9).

Field-flow fractionation (FFF) is not subject to the severe complications
of packed-bed hydrodynamic chromatography because its channel is
always without obstructions. The channel geometry is uniform and
mathematically tractable such that the theoretical predictions of mean
displacement velocity under the influence of various applied fields has
been highly successful.

The width, w, of FFF channels is typically 0.25 mm, or 250 um. Clearly
finite-size effects for ~ 1 um particles unaffected by a field would be small.
A lateral field or force, however, compresses the particle cloud near one
wall, and its mean altitude, /, may be no more than a few um. We regard
10 um as typical, but considerably smaller values are sometimes realized.
Under these circumstances, and with particles approaching 1 ym diameter,
finite size effects are expected to have a significant role in retention and
dispersion, much as outlined by the theory of this paper.
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TABLE 1
Experimental Retention Volumes V, of Polystyrene Latex Beads in Sedimenta-

tion FFF Compared to Theoretical Values (a) Allowing for Finite Particle Size
(R = 6a + 64y) and (b) Totally Neglecting Particle Size (R = 64,4)

V: (ml)
Particle Experimental Theoretical (a) Theoretical (b)
diameter (um) v, V, .
0.765 86.3 87.0 98.8
0.982 164 135 185

Previously published FFF data to test the foregoing theory are scarce
because particle size effects have been minor in most work. We have
recently completed an experiment with sedimentation FFF, however,
that permits an initial test of retention theory (25). Polystyrene latex
beads of diameters 0.982 and 0.765 um were retained in a 5.21-ml volume
column for 49 ml at 21 gravities, following which elution was completed
at 11.8 gravities. The elution volume V, was calculated as the sum of the
two volumes corresponding to the respective field strengths by the equation

Vi=Vi+ V1 = V,R/V)R, (3

where V| is the first component of the elution volume-—-49 ml in this case—
and ¥ is the column volume—5.21 ml. Retention ratios R, and R,
correspond to the two respective levels of field strength noted. We have
calculated the necessary R; and R, values by using (a) Eq. (16), R =
6o + 64, and (b) R = 64, the latter applicable when particle size is
negligible, « — 0. The results are shown in Table 1.

Examination of the table shows that the particle size effect is quite
accurately predicted with the 0.765 um particles, but only partly accounted
for with 0.982 um particles. Since retention calculations in sedimentation
FFF are generally quite accurate (10), the discrepancy cannot be quickly
assigned to random errors or to distortions unrelated to particle size. Yet
no particle-size effect can be identified from the limited data. It is possible
that the larger particles are driven to the wall with sufficient force that
some type of particle—wall interaction creates an additional retention
effect. An evaluation of this hypothesis, unfortunately, must await the
accumulation of additional experimental evidence.
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